login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digit sum of composite even number equals digit sum of juxtaposition of its prime factors (counted with multiplicity).
2

%I #26 Aug 25 2024 16:38:21

%S 4,22,58,94,166,202,274,346,378,382,438,454,526,562,576,588,634,636,

%T 648,654,666,690,706,728,762,778,852,922,958,1086,1282,1284,1376,1626,

%U 1642,1678,1736,1776,1822,1842,1858,1872,1894,1908,1952,1962,1966,2038

%N Digit sum of composite even number equals digit sum of juxtaposition of its prime factors (counted with multiplicity).

%C Even Smith numbers. - _Robert Israel_, Aug 24 2024

%H Robert Israel, <a href="/A036924/b036924.txt">Table of n, a(n) for n = 1..10000</a>

%p filter:= proc(n) local F;

%p F:= ifactors(n)[2];

%p convert(convert(n,base,10),`+`) = convert(map(t -> t[2]*convert(convert(t[1],base,10),`+`), F),`+`)

%p end proc:

%p select(filter, [seq(i,i=4..10000,2)]); # _Robert Israel_, Aug 24 2024

%t d[n_] := IntegerDigits[n]; co[n_,k_] := Nest[Flatten[d[{#,n}]]&, n, k-1]; t={}; Do[If[!PrimeQ[n] && Total[d[n]] == Total[Flatten[d[co@@@FactorInteger[n]]]], AppendTo[t,n]], {n,4,2040,2}]; t (* _Jayanta Basu_, Jun 04 2013 *)

%Y Cf. A006753, A019506, A036925.

%K nonn,base

%O 1,1

%A _Patrick De Geest_, Jan 04 1999

%E Title made more precise by _Sean A. Irvine_, Nov 30 2020