login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036700 Number of Gaussian integers z=a+bi satisfying |z|<=n, a>=0, 0<=b<a. 3
0, 1, 2, 4, 7, 11, 15, 20, 26, 33, 41, 49, 57, 68, 79, 91, 102, 115, 129, 144, 160, 175, 193, 210, 228, 249, 269, 290, 311, 333, 357, 380, 406, 431, 458, 487, 512, 542, 570, 603, 634, 664, 697, 730, 766, 802, 835, 872, 909, 948, 988 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..50.

Wikipedia, Gaussian Integers

Index entries for Gaussian integers and primes

FORMULA

Partial sums of A036701. - Sean A. Irvine, Nov 22 2020

MAPLE

A036700 := proc(n)

        local a, x, y ;

        a := 0 ;

        for x from 0 do

                if x^2 > n^2 then

                        return a;

                fi ;

                for y from 0 to x-1 do

                        if y^2+x^2 <= n^2 then

                                a := a+1 ;

                        end if;

                end do;

        end do:

end proc: # R. J. Mathar, Oct 29 2011

CROSSREFS

Cf. A036701, A036702.

Sequence in context: A247184 A025703 A025709 * A025719 A025696 A077169

Adjacent sequences:  A036697 A036698 A036699 * A036701 A036702 A036703

KEYWORD

nonn,changed

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 11:28 EST 2020. Contains 338720 sequences. (Running on oeis4.)