login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036653 Number of 6-valent trees with n nodes. 4
1, 1, 1, 1, 2, 3, 6, 11, 22, 45, 101, 223, 520, 1223, 2954, 7208, 17905, 44863, 113738, 290605, 748711, 1941592, 5067433, 13297590, 35074788, 92939166, 247317085, 660681399, 1771321949, 4764829720, 12857155911, 34793296227, 94410222996, 256826514689, 700311754812, 1913868186951 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..500

R. Otter, The number of trees, Ann. of Math. (2) 49 (1948), 583-599 discusses asymptotics.

E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees)., J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.

Index entries for sequences related to trees

FORMULA

a(n) = A036651(n) + A036652(n) for n > 0.

G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S6,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^6 + 15*B(x)^4*B(x^2) + 45*B(x)^2*B(x^2)^2 + 15*B(x^2)^3 + 40*B(x)^3*B(x^3) + 120*B(x)*B(x^2)*B(x^3) + 40*B(x^3)^2 + 90*B(x)^2*B(x^4) + 90*B(x^2)*B(x^4) + 144*B(x)*B(x^5) + 120*B(x^6)) / 720, where B(x) = 1 + x * cycle_index(S5,B(x)) = 1 + x * (B(x)^5 + 10*B(x)^3*B(x^2) + 15*B(x)*B(x^2)^2 + 20*B(x)^2*B(x^3) + 20*B(x^2)*B(x^3) + 30*B(x)*B(x^4) + 24*B(x^5)) / 120 is the generating function for A036721. - Robert A. Russell, Jan 19 2023

MATHEMATICA

n = 20; (* algorithm from Rains and Sloane *)

S5[f_, h_, x_] := f[h, x]^5/120 + f[h, x]^3 f[h, x^2]/12 + f[h, x]^2 f[h, x^3]/6 + f[h, x] f[h, x^2]^2/8 + f[h, x] f[h, x^4]/4 + f[h, x^2] f[h, x^3]/6 + f[h, x^5]/5;

S6[f_, h_, x_] := f[h, x]^6/720 + f[h, x]^4 f[h, x^2]/48 + f[h, x]^3 f[h, x^3]/18 + f[h, x]^2 f[h, x^2]^2/16 + f[h, x]^2 f[h, x^4]/8 + f[h, x] f[h, x^2] f[h, x^3]/6 + f[h, x] f[h, x^5]/5 + f[h, x^2]^3/48 + f[h, x^2] f[h, x^4]/8 + f[h, x^3]^2/18 + f[h, x^6]/6;

T[-1, z_] := 1; T[h_, z_] := T[h, z] = Table[z^k, {k, 0, n}].Take[CoefficientList[z^(n+1) + 1 + S5[T, h-1, z]z, z], n+1];

Sum[Take[CoefficientList[z^(n+1) + S6[T, h-1, z]z - S6[T, h-2, z]z - (T[h-1, z] - T[h-2, z]) (T[h-1, z]-1), z], n+1], {h, 1, n/2}] + PadRight[{0, 1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h, z] - T[h-1, z])^2/2 + (T[h, z^2] - T[h-1, z^2])/2, z], n+1], {h, 0, n/2}] (* Robert A. Russell, Sep 15 2018 *)

b[n_, i_, t_, k_] := b[n, i, t, k] = If[i<1, 0, Sum[Binomial[b[i-1, i-1,

k, k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];

b[0, i_, t_, k_] = 1; m = 5; (* m = maximum children *) n = 40;

gf[x_] = 1 + Sum[b[j-1, j-1, m, m]x^j, {j, 1, n}]; (* G.f. for A036721 *)

ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];

CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],

{x, 0, n}]], x] (* Robert A. Russell, Jan 19 2023 *)

CROSSREFS

Column k=6 of A144528; A036721 (rooted trees).

Cf. A036651, A036652.

Sequence in context: A274936 A244521 A096202 * A318031 A316500 A123769

Adjacent sequences: A036650 A036651 A036652 * A036654 A036655 A036656

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

a(0) changed to 1 and terms a(32) and beyond from Andrew Howroyd, Dec 18 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 05:47 EDT 2023. Contains 361634 sequences. (Running on oeis4.)