login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036386
Number of prime powers (p^2, p^3, ...) <= 2^n.
7
0, 1, 2, 4, 7, 9, 13, 16, 20, 26, 31, 40, 50, 61, 78, 93, 119, 150, 189, 242, 310, 400, 525, 684, 900, 1190, 1581, 2117, 2836, 3807, 5136, 6948, 9425, 12811, 17437, 23788, 32517, 44512, 60971, 83640, 114899, 157948, 217336, 299360, 412635, 569193, 785753, 1085319, 1500140, 2074794, 2870849, 3974425, 5504966
OFFSET
1,3
FORMULA
a(n) = Sum_{j=2..n+1} pi(floor(2^(n/j))). The summation starts with squares(j=2); for arbitrary range (=y), the y^(1/j) argument has to be used.
EXAMPLE
The 9 prime powers not exceeding 64 are 4, 8, 9, 16, 25, 27, 32, 49, 64.
n = 25, a(25) = 900, pi(5792) + pi(322) + pi(76) + pi(32) + pi(17) + pi(11) + pi(8) + pi(6) + pi(5) + pi(4) + pi(4) + pi(3) + pi(3) + pi(3) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(1) = 760 + 66 + 21 + 11 + 7 + 5 + 4 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0.
MATHEMATICA
f[n_] := Length@ Union@ Flatten@ Table[ Prime[j]^k, {k, 2, n + 1}, {j, PrimePi[2^(n/k)]}]; Array[f, 46] (* Robert G. Wilson v, Jul 08 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Labos Elemer, May 07 2001
Terms a(47) and beyond from Hiroaki Yamanouchi, Nov 15 2016
STATUS
approved