login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of prime powers (p^2, p^3, ...) <= 2^n.
7

%I #29 Aug 19 2021 09:50:22

%S 0,1,2,4,7,9,13,16,20,26,31,40,50,61,78,93,119,150,189,242,310,400,

%T 525,684,900,1190,1581,2117,2836,3807,5136,6948,9425,12811,17437,

%U 23788,32517,44512,60971,83640,114899,157948,217336,299360,412635,569193,785753,1085319,1500140,2074794,2870849,3974425,5504966

%N Number of prime powers (p^2, p^3, ...) <= 2^n.

%H Ray Chandler, <a href="/A036386/b036386.txt">Table of n, a(n) for n = 1..125</a> (first 112 terms from Hiroaki Yamanouchi)

%H <a href="/index/Pri#primepop">Index entries for sequences related to numbers of primes in various ranges</a>

%F a(n) = Sum_{j=2..n+1} pi(floor(2^(n/j))). The summation starts with squares(j=2); for arbitrary range (=y), the y^(1/j) argument has to be used.

%e The 9 prime powers not exceeding 64 are 4, 8, 9, 16, 25, 27, 32, 49, 64.

%e n = 25, a(25) = 900, pi(5792) + pi(322) + pi(76) + pi(32) + pi(17) + pi(11) + pi(8) + pi(6) + pi(5) + pi(4) + pi(4) + pi(3) + pi(3) + pi(3) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(1) = 760 + 66 + 21 + 11 + 7 + 5 + 4 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0.

%t f[n_] := Length@ Union@ Flatten@ Table[ Prime[j]^k, {k, 2, n + 1}, {j, PrimePi[2^(n/k)]}]; Array[f, 46] (* _Robert G. Wilson v_, Jul 08 2011 *)

%Y Cf. A007053, A029837, A036378-A036390.

%K nonn

%O 1,3

%A _Labos Elemer_

%E More terms from _Labos Elemer_, May 07 2001

%E Terms a(47) and beyond from _Hiroaki Yamanouchi_, Nov 15 2016