login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036382
Odd split numbers: have a nontrivial factorization n=ab with a and b coprime, so that L(a) + L(b) <= L(n), where L(x) = A029837(x) = ceiling(log_2(x)).
6
21, 33, 35, 39, 65, 69, 75, 77, 87, 91, 93, 105, 129, 133, 135, 141, 143, 145, 147, 155, 159, 161, 165, 175, 177, 183, 189, 195, 203, 217, 259, 261, 265, 267, 273, 275, 279, 285, 287, 291, 295, 297, 299, 301, 303, 305, 309, 315, 319, 321, 325, 327, 329, 339
OFFSET
1,1
COMMENTS
All even numbers are split numbers, except that prime powers -- here powers of 2 -- are by definition excluded.
The gaps g(n) = a(n+1) - a(n) are growing up to some local maximum before suddenly dropping down to a very small value and starting a new cycle of growth. The local maxima, distinctly seen as kinks in the graph, are g(1) = 12, g(4) = 26, g(12) = 24, g(30) = 42, g(70) = 48, g(157) = 110, g(348) = 96, g(748) = 160, g(1603) = 192, g(3379) = 446, g(7076) = 384, ... They occur at indices slightly larger than twice the preceding one; every other is of size 6*2^k, k = 1,2,3,... while those in between don't seem to follow a simple pattern and are sometimes larger than the subsequent gap of size 6*2^k. - M. F. Hasler, Apr 15 2017
LINKS
EXAMPLE
s = 39 is a split number since s = 39 = 3*13, gcd(3,13)=1 and L(3) + L(13) = 2 + 4 = L(39).
MATHEMATICA
Select[Range[1, 340, 2], Function[n, Total@ Boole@ Map[And[Total@ Ceiling@ Log2@ # <= Ceiling@ Log2@ n, CoprimeQ @@ #] &, Map[{#, n/#} &, Rest@ Take[#, Ceiling[Length[#]/2]]]] > 0 &@ Divisors@ n]] (* Michael De Vlieger, Mar 03 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name corrected by Michael De Vlieger, Mar 03 2017
STATUS
approved