login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036295
Numerator of Sum_{i=1..n} i/2^i.
4
0, 1, 1, 11, 13, 57, 15, 247, 251, 1013, 509, 4083, 4089, 16369, 2047, 65519, 65527, 262125, 131067, 1048555, 1048565, 4194281, 1048573, 16777191, 16777203, 67108837, 33554425, 268435427, 268435441, 1073741793, 67108863, 4294967263, 4294967279, 17179869149
OFFSET
0,4
REFERENCES
C. C. Clawson, The Beauty and Magic of Numbers. New York: Plenum Press (1996): 95.
LINKS
A. F. Horadam, Oresme numbers, Fib. Quart., 12 (1974), 267-271.
FORMULA
a(n) = numerator(2-(n+2)/2^n).
If n+2=2^k*m with m odd, then a(n) = 2^(n+1-k) - m.
For n >= 1, a(n) = A000265(A000295(n+1)). - Peter Munn, May 30 2023
a(n) = A000295(n+1)/A006519(n+2). - Ridouane Oudra, Jul 16 2023
Numerators of coefficients in expansion of 2*x / ((1 - x) * (2 - x)^2). - Ilya Gutkovskiy, Aug 04 2023
MAPLE
seq(numer(2-(n+2)/2^n), n=0..50); # Ridouane Oudra, Jul 16 2023
MATHEMATICA
a[n_] := Module[{k, m}, For[k = 0; m = n + 2, EvenQ[m], k++, m/=2]; 2^(n + 1 - k) - m]
Table[Numerator[Sum[i/2^i, {i, n}]], {n, 40}] (* Alonso del Arte, Aug 12 2012 *)
PROG
(PARI) concat(0, vector(100, n, numerator(sum(i=1, n, i/2^i)))) \\ Colin Barker, Nov 09 2014
(PARI) a(n) = numerator(2-(n+2)/2^n); \\ Joerg Arndt, Jul 17 2023
(Magma) [0] cat [Numerator(&+[i/2^i: i in [1..n]]): n in [1..40]]; // Vincenzo Librandi, Nov 09 2014
CROSSREFS
Cf. A036296 (denominators).
Sequence in context: A188386 A027450 A234799 * A132201 A057189 A072580
KEYWORD
nonn,easy,frac
STATUS
approved