login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035878 Number of points of l_1 norm n in the "diamond" lattice D^+_4. 3
1, 0, 40, 32, 272, 160, 888, 448, 2080, 960, 4040, 1760, 6960, 2912, 11032, 4480, 16448, 6528, 23400, 9120, 32080, 12320, 42680, 16192, 55392, 20800, 70408, 26208, 87920, 32480, 108120, 39680, 131200, 47872, 157352, 57120, 186768, 67488, 219640, 79040, 256160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).

Joan Serra-Sagristà, Enumeration of lattice points in l_1 norm, Information Processing Letters, 76, no. 1-2 (2000), 39-44.

Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).

FORMULA

For n>0, a(n) = ( 2n^2 + 1 + (n^2+2)*(-1)^n ) * 4n/3.

G.f.: (x^8+36*x^6+32*x^5+118*x^4+32*x^3+36*x^2+1) / ((x-1)^4*(x+1)^4). - Colin Barker, Nov 18 2012

EXAMPLE

This 4D lattice consists of points with coordinates that have even sum and are either all integer or all half-integer. (It is actually similar to Z^4.) The a(2) = 40 lattice vectors having l_1 norm 2 include: +-(1,1,1,1)/2, 6 permutations of (1,1,-1,-1)/2, 6 permutations with 4 choices of signs in (+-1,+-1,0,0), and 4 permutations with 2 choices of signs in (+-2,0,0,0), totaling 2 + 6 + 6*4 + 4*2 = 40.

MAPLE

n := 4; A035878 := proc(m) global n; local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end;

MATHEMATICA

f[m_, n_] := 2^(n-1) *Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2 *n* Hypergeometric2F1[1-m, 1-n, 2, 2], 0]; f[0, _] = 1; Table[f[m, 4], {m, 0, 32}] (* Jean-François Alcover, Apr 18 2013, after Maple *)

CoefficientList[Series[(x^8 + 36 x^6 + 32 x^5 + 118 x^4 + 32 x^3 + 36 x^2 + 1)/((x - 1)^4 (x + 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)

CROSSREFS

Cf. A035877, A035879, A010369, A035881-A035926, A010006, A008412, A005925.

Sequence in context: A163956 A229661 A070724 * A022996 A023482 A273770

Adjacent sequences:  A035875 A035876 A035877 * A035879 A035880 A035881

KEYWORD

nonn,easy

AUTHOR

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

EXTENSIONS

Recomputed by N. J. A. Sloane, Nov 27 1998

More terms from Vincenzo Librandi, Oct 21 2013

Name edited by Andrey Zabolotskiy, Aug 29 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 14:44 EDT 2022. Contains 357073 sequences. (Running on oeis4.)