OFFSET
1,1
COMMENTS
All terms are even since (10^k+1)^2 is a palindrome of length 2*k+1. a(12) >= 46 if it exists (see A263618). - Chai Wah Wu, Jun 14 2024
LINKS
Patrick De Geest, Palindromic Squares
Eric Weisstein's World of Mathematics, Palindromic Number
MATHEMATICA
A034822[n_] := Select[Range[Ceiling[Sqrt[10^(n - 1)]], Floor[Sqrt[10^n]]], #^2 == IntegerReverse[#^2] &];
Select[Range[12], Length[A034822[#]] == 0 &] (* Robert Price, Apr 23 2019 *)
PROG
(Python)
from sympy import integer_nthroot as iroot
def ispal(n): s = str(n); return s == s[::-1]
def ok(n):
for r in range(iroot(10**(n-1), 2)[0] + 1, iroot(10**n, 2)[0]):
if ispal(r*r): return False
return True
print([m for m in range(1, 16) if ok(m)]) # Michael S. Branicky, Feb 04 2021
CROSSREFS
KEYWORD
nonn,base,hard,more
AUTHOR
Patrick De Geest, Oct 15 1998
EXTENSIONS
Two more terms from Patrick De Geest, Apr 01 2002
STATUS
approved