login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034346
Number of binary [ n,5 ] codes without 0 columns.
7
0, 0, 0, 0, 1, 5, 17, 54, 163, 465, 1283, 3480, 9256, 24282, 62812, 160106, 401824, 992033, 2406329, 5730955, 13393760, 30709772, 69079030, 152473837, 330344629, 702839150, 1469214076, 3019246455, 6103105779, 12142291541, 23790590387, 45932253637, 87434850942, 164188881007
OFFSET
1,6
LINKS
Discrete algorithms at the University of Bayreuth, Symmetrica.
Harald Fripertinger, Isometry Classes of Codes.
H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,5,2}.]
Petros Hadjicostas, Generating function for a(n).
Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, J. Combin. Theory Ser. A 114(4) (2007), 619-630. [See Section 5.]
David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
Wikipedia, Cycle index.
PROG
(Sage) # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
def A034253col(k, length):
G1 = PSL(k, GF(2))
G2 = PSL(k-1, GF(2))
D1 = G1.cycle_index()
D2 = G2.cycle_index()
f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
f = f1 - f2
return f.taylor(x, 0, length).list()
# For instance the Taylor expansion for column k = 5 gives a(n):
print(A034253col(5, 30)) # Petros Hadjicostas, Oct 04 2019
CROSSREFS
Column k=5 of A034253 and first differences of A034359.
Sequence in context: A295163 A195689 A079363 * A055419 A027091 A183712
KEYWORD
nonn
EXTENSIONS
More terms from Petros Hadjicostas, Oct 04 2019
STATUS
approved