login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033697
Theta series of lattice A_2 tensor D_5 (dimension 10, det. 3888, min. norm 4).
1
1, 0, 120, 480, 1950, 3360, 9000, 16800, 25320, 39840, 76320, 80160, 146190, 193920, 236400, 309600, 510270, 455040, 722520, 889440, 994176, 1200480, 1798560, 1525440, 2319480, 2655360, 2805360, 3255360, 4787580, 3861600, 5594400, 6297120, 6528360, 7267680
OFFSET
0,3
COMMENTS
This theta series is an element of the space of modular forms on Gamma_1(12) with Kronecker character -3 in modulus 12, weight 5, and dimension 11. - Andy Huchala, May 16 2023
LINKS
PROG
(Magma)
prec := 30;
basis := [1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1];
S := Matrix(15, basis);
L := LatticeWithBasis(S);
T := ThetaSeriesModularForm(L);
Coefficients(PowerSeries(T, prec)); // Andy Huchala, May 16 2023
CROSSREFS
Sequence in context: A235232 A304284 A167562 * A157960 A067915 A305072
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Andy Huchala, May 16 2023
STATUS
approved