%I #11 May 16 2023 07:54:10
%S 1,0,120,480,1950,3360,9000,16800,25320,39840,76320,80160,146190,
%T 193920,236400,309600,510270,455040,722520,889440,994176,1200480,
%U 1798560,1525440,2319480,2655360,2805360,3255360,4787580,3861600,5594400,6297120,6528360,7267680
%N Theta series of lattice A_2 tensor D_5 (dimension 10, det. 3888, min. norm 4).
%C This theta series is an element of the space of modular forms on Gamma_1(12) with Kronecker character 3 in modulus 12, weight 5, and dimension 11.  _Andy Huchala_, May 16 2023
%H Andy Huchala, <a href="/A033697/b033697.txt">Table of n, a(n) for n = 0..10000</a>
%o (Magma)
%o prec := 30;
%o basis := [1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1];
%o S := Matrix(15,basis);
%o L := LatticeWithBasis(S);
%o T := ThetaSeriesModularForm(L);
%o Coefficients(PowerSeries(T,prec)); // _Andy Huchala_, May 16 2023
%K nonn
%O 0,3
%A _N. J. A. Sloane_.
%E More terms from _Andy Huchala_, May 16 2023
