login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157960 a(n) = 121*n^2 - n. 2
120, 482, 1086, 1932, 3020, 4350, 5922, 7736, 9792, 12090, 14630, 17412, 20436, 23702, 27210, 30960, 34952, 39186, 43662, 48380, 53340, 58542, 63986, 69672, 75600, 81770, 88182, 94836, 101732, 108870, 116250, 123872, 131736, 139842 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (242*n - 1)^2 - (121*n^2 - n)*22^2 = 1 can be written as A157961(n)^2 - a(n)*22^2 = 1. - Vincenzo Librandi, Feb 10 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(11^2*t-1)).

Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).

FORMULA

G.f.: x*(-120 - 122*x)/(x-1)^3. - Vincenzo Librandi, Feb 10 2012

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 10 2012

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {120, 482, 1086}, 50] (* Vincenzo Librandi, Feb 10 2012

PROG

(MAGMA) I:=[120, 482, 1086]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 10 2012

(PARI) for(n=1, 40, print1(121*n^2 - n", ")); \\ Vincenzo Librandi, Feb 10 2012

CROSSREFS

Cf. A157961.

Sequence in context: A304284 A167562 A033697 * A067915 A305072 A221563

Adjacent sequences:  A157957 A157958 A157959 * A157961 A157962 A157963

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 10 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 00:04 EDT 2021. Contains 345125 sequences. (Running on oeis4.)