login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033592
a(n) = (2*n+1)*(3*n+1)*(4*n+1)*(5*n+1).
1
1, 360, 3465, 14560, 41769, 96096, 191425, 344520, 575025, 905464, 1361241, 1970640, 2764825, 3777840, 5046609, 6610936, 8513505, 10799880, 13518505, 16720704, 20460681, 24795520, 29785185, 35492520, 41983249, 49325976, 57592185, 66856240, 77195385
OFFSET
0,2
FORMULA
G.f.: (1 +355*x +1675*x^2 +825*x^3 +24*x^4)/(1-x)^5. - Colin Barker, Sep 04 2012
a(0)=1, a(1)=360, a(2)=3465, a(3)=14560, a(4)=41769, a(n) = 5*a(n-1)- 10*a(n-2) + 10*a(n-3) -5*a(n-4) +a(n-5). - Harvey P. Dale, Nov 28 2013
From G. C. Greubel, Mar 05 2020: (Start)
a(n) = n^4 * Pochhammer(2 + 1/n, 4).
E.g.f.: (1 + 359*x + 1373*x^2 + 874*x^3 + 120*x^4)*exp(x). (End)
MAPLE
1, seq( n^4*pochhammer(2+1/n, 4), n=1..30); # G. C. Greubel, Mar 05 2020
MATHEMATICA
CoefficientList[Series[(1 + 355 x + 1675 x^2 + 825 x^3 + 24 x^4)/(1 - x)^5, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 20 2013 *)
Table[Times@@(n*Range[2, 5]+1), {n, 0, 30}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 360, 3465, 14560, 41769}, 30] (* Harvey P. Dale, Nov 28 2013 *)
PROG
(Magma) [(2*n+1)*(3*n+1)*(4*n+1)*(5*n+1): n in [0..30]]; // Vincenzo Librandi, Oct 20 2013
(PARI) vector(31, n, my(m=n-1); prod(j=2, 5, j*m+1)) \\ G. C. Greubel, Mar 05 2020
(Sage) [product(j*n+1 for j in (2..5)) for n in (0..30)] # G. C. Greubel, Mar 05 2020
(GAP) List([0..30], n-> Product([2..5], j-> j*n+1) ); # G. C. Greubel, Mar 05 2020
CROSSREFS
Sequence in context: A234555 A234550 A024185 * A305626 A056322 A056313
KEYWORD
nonn,easy
STATUS
approved