login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032945
Numbers k whose base-10 representation Sum_{i=0..m} d(i)*10^(m-i) has d(i)=0 for all odd i. Here m is the position of the lead digit of k.
4
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 400, 401, 402, 403
OFFSET
1,3
COMMENTS
Every nonnegative integer can be represented as the sum of two members of this sequence. - Franklin T. Adams-Watters, Aug 30 2014
This first differs from A236402 at a(110)=1000 (followed by 1010, 1020, 1030, ...), while A236402(110)=910 (followed by 1000, 1001, 1002, ...). - M. F. Hasler, Dec 28 2014
LINKS
MAPLE
N:= 6: # to get all terms with up to N digits
A[1]:= 0:
count:= 1:
for d from 1 to N do
dp:= ceil(d/2);
for j from 10^(dp-1) to 10^dp-1 do
L:= ListTools[Reverse](convert(j, base, 10));
L:= ListTools[Interleave](L, [0$(d-dp)]);
count:= count+1;
A[count]:= add(L[i]*10^(d-i), i=1..d);
od
od:
seq(A[i], i=1..count); # Robert Israel, Aug 31 2014
PROG
(PARI) is(n)=!forstep(i=2, #n=digits(n), 2, n[i]&&return) \\ M. F. Hasler, Dec 28 2014
(Python)
def ok(n): return str(n)[1::2].strip('0') == ""
print([k for k in range(404) if ok(k)]) # Michael S. Branicky, Apr 12 2022
CROSSREFS
Cf. A126684.
Sequence in context: A107085 A212499 A244890 * A236402 A052018 A352461
KEYWORD
nonn,base
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters, Aug 30 2014
STATUS
approved