|
|
A032775
|
|
Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 7.
|
|
4
|
|
|
0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 82, 83
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
n(n+1)(n+2)...(n+6) / (n + (n+1) + (n+2) + ... + (n+6)) is an integer.
|
|
LINKS
|
|
|
FORMULA
|
Natural numbers minus '4, 11, 18, 25, ...' (= previous term + 7).
G.f.: x^2*(1+x+x^2+2*x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1) + a(n-6) - a(n-7) for n > 7.
a(n) = (42*n - 45 - 3*cos(n*Pi) + 12*cos(n*Pi/3) - 4*sqrt(3)*sin(2*n*Pi/3))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 6}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 15 2016 *)
DeleteCases[Range[0, 100], _?(Mod[#, 7]==4&)] (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 5, 6, 7}, 80] (* Harvey P. Dale, Sep 19 2020 *)
|
|
PROG
|
(Magma) [ n: n in [0..90] | n mod 7 in {0, 1, 2, 3, 5, 6} ]; // Vincenzo Librandi, Dec 29 2010
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|