OFFSET
0,2
COMMENTS
From Peter Bala, Sep 05 2022: (Start)
Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A007837.
Equivalently, the expansion of exp( Sum_{n >= 1} a(n)^x^n/n ) = 1 + 2*x + 4*x^2 + 10*x^3 + 28*x^4 + 82*x^5 + 293*x^6 + ... has integer coefficients. Cf. A168268. (End)
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
C. G. Bower, Transforms (2)
FORMULA
E.g.f: Product_{k > 0} (1 + x^k/k!)^2. - Andrew Howroyd, Sep 11 2018
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Product[(1+x^k/k!)^2, {k, nn}], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Feb 07 2019 *)
PROG
(PARI) seq(n)={Vec(serlaplace(prod(k=1, n, (1 + x^k/k! + O(x*x^n))^2)))} \\ Andrew Howroyd, Sep 11 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=1 prepended and terms a(22) and beyond from Andrew Howroyd, Sep 11 2018
STATUS
approved