login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032312
"EGJ" (unordered, element, labeled) transform of 2,2,2,2...
5
1, 2, 4, 14, 48, 162, 826, 3558, 17296, 101714, 529014, 3218118, 21014010, 140974654, 888205714, 6529087674, 52806013456, 375280736754, 2994842092102, 23821110274230, 217847892367318, 1894959770821614, 16188955616322394, 142246084665611010, 1376483692715941594
OFFSET
0,2
COMMENTS
From Peter Bala, Sep 05 2022: (Start)
Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A007837.
Equivalently, the expansion of exp( Sum_{n >= 1} a(n)^x^n/n ) = 1 + 2*x + 4*x^2 + 10*x^3 + 28*x^4 + 82*x^5 + 293*x^6 + ... has integer coefficients. Cf. A168268. (End)
LINKS
C. G. Bower, Transforms (2)
FORMULA
E.g.f: Product_{k > 0} (1 + x^k/k!)^2. - Andrew Howroyd, Sep 11 2018
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Product[(1+x^k/k!)^2, {k, nn}], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Feb 07 2019 *)
PROG
(PARI) seq(n)={Vec(serlaplace(prod(k=1, n, (1 + x^k/k! + O(x*x^n))^2)))} \\ Andrew Howroyd, Sep 11 2018
CROSSREFS
Sequence in context: A006443 A152103 A102879 * A032222 A212268 A092665
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended and terms a(22) and beyond from Andrew Howroyd, Sep 11 2018
STATUS
approved