login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032310
Number of ways to partition n labeled elements into sets of odd sizes, with all sizes different.
6
1, 1, 0, 1, 4, 1, 6, 1, 64, 505, 130, 1321, 1024, 13157, 2380, 395851, 5782144, 1639617, 24545706, 16100905, 306621184, 292018525, 6304002100, 1549052715, 507969498304, 11794047630801, 3164830777316, 75389026652551, 48756350408224, 1240389053007865
OFFSET
0,5
LINKS
C. G. Bower, Transforms (2)
FORMULA
"EGJ" (unordered, element, labeled) transform of 1, 0, 1, 0... (odds)
E.g.f.: Product_{k>0} (1+x^(2*k-1)/(2*k-1)!). - Vladeta Jovovic, Jan 16 2004
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i))))
end:
a:= n-> b(n, iquo(n+1, 2)*2-1):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 08 2015
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n - i*j, i-2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[n, Quotient[n+1, 2]*2-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A003724.
Sequence in context: A316223 A087652 A072195 * A032220 A032145 A032050
KEYWORD
nonn
EXTENSIONS
Description corrected by Vladeta Jovovic, Aug 18 2004
a(0)=1 prepended by Alois P. Heinz, Mar 08 2015
STATUS
approved