login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032301
Shifts left under "EFJ" (unordered, size, labeled) transform.
2
1, 1, 1, 4, 8, 38, 206, 1200, 6824, 50912, 446752, 3828592, 38953680, 411358960, 4740541440, 57933236928, 759535226432, 10488778719488, 156933187370432, 2425018017191040, 40031753222399360, 689218695990369536, 12461424512466701312, 234386152841716303616
OFFSET
1,4
COMMENTS
a(n) is the number of increasing rooted trees where any 2 subtrees extending from the same node have a different number of nodes (the unlabeled trees counted by A032305). An increasing tree is labeled so that every path from the root to an external node is increasing. - Geoffrey Critzer, Jul 29 2013
(a(n)/n!)^(1/n) tends to 0.82143368... - Vaclav Kotesovec, Jul 21 2019
FORMULA
E.g.f.: A(x) satisfies: A'(x) = Product_{n>=1} 1 + a(n) x^n/n!. - Geoffrey Critzer, Jul 29 2013
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(multinomial(n, i$j, n-i*j)*binomial(b((i-1)$2), j)
*b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> b((n-1)$2):
seq(a(n), n=1..30); # Alois P. Heinz, Jul 31 2013
MATHEMATICA
nn=15; f[x_]:=Sum[a[n]x^n/n!, {n, 0, nn}]; sol=SolveAlways[0==Series[f[x] -Integrate[Product[1+a[i]x^i/i!, {i, 1, nn}], x], {x, 0, nn}], x]; Table[a[n], {n, 0, nn}]/.sol (* Geoffrey Critzer, Jul 29 2013 *)
PROG
(PARI) EFJ(v)={Vec(serlaplace(prod(k=1, #v, 1 + v[k]*x^k/k! + O(x*x^#v)))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, v=concat([1], EFJ(v))); v} \\ Andrew Howroyd, Sep 11 2018
CROSSREFS
Sequence in context: A231398 A231465 A208820 * A032213 A225824 A032317
KEYWORD
nonn,eigen
STATUS
approved