login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Shifts left under "EFJ" (unordered, size, labeled) transform.
2

%I #28 Jul 21 2019 06:52:24

%S 1,1,1,4,8,38,206,1200,6824,50912,446752,3828592,38953680,411358960,

%T 4740541440,57933236928,759535226432,10488778719488,156933187370432,

%U 2425018017191040,40031753222399360,689218695990369536,12461424512466701312,234386152841716303616

%N Shifts left under "EFJ" (unordered, size, labeled) transform.

%C a(n) is the number of increasing rooted trees where any 2 subtrees extending from the same node have a different number of nodes (the unlabeled trees counted by A032305). An increasing tree is labeled so that every path from the root to an external node is increasing. - _Geoffrey Critzer_, Jul 29 2013

%C (a(n)/n!)^(1/n) tends to 0.82143368... - _Vaclav Kotesovec_, Jul 21 2019

%H Alois P. Heinz, <a href="/A032301/b032301.txt">Table of n, a(n) for n = 1..200</a>

%H Vaclav Kotesovec, <a href="/A032301/a032301.jpg">Plot of a(n+1)/a(n)/n for n = 1..3300</a>

%F E.g.f.: A(x) satisfies: A'(x) = Product_{n>=1} 1 + a(n) x^n/n!. - _Geoffrey Critzer_, Jul 29 2013

%p with(combinat):

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(multinomial(n, i$j, n-i*j)*binomial(b((i-1)$2), j)

%p *b(n-i*j, i-1), j=0..min(1, n/i))))

%p end:

%p a:= n-> b((n-1)$2):

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jul 31 2013

%t nn=15;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];sol=SolveAlways[0==Series[f[x] -Integrate[Product[1+a[i]x^i/i!,{i,1,nn}],x],{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol (* _Geoffrey Critzer_, Jul 29 2013 *)

%o (PARI) EFJ(v)={Vec(serlaplace(prod(k=1, #v, 1 + v[k]*x^k/k! + O(x*x^#v)))-1, -#v)}

%o seq(n)={my(v=[1]); for(n=2, n, v=concat([1], EFJ(v))); v} \\ _Andrew Howroyd_, Sep 11 2018

%K nonn,eigen

%O 1,4

%A _Christian G. Bower_