login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225824 The number of increasing rooted identity trees. 1
1, 1, 1, 4, 8, 38, 206, 1200, 7034, 53012, 465190, 4072948, 40967916, 438348328, 5113450320, 63135973560, 835727519000, 11736948927176, 175225673352928, 2749604628466960, 45540211979269216, 791473522065224592, 14405894145521294480, 274114459633006310336 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Unlabeled rooted identity trees are counted by A004111.  An increasing tree is a labeled tree such that any path from the root to each node is increasing.

The first 8 terms are A032301(1..8).  The 9th term is A032301(9) plus the 210 increasing labelings of the tree shown in the example.

The number of increasing labelings of a tree is n! divided by the product over all nodes of the number of descendants of the node (including the node itself). For the tree shown in the example, the number of labelings is 9!/(1 * 2 * 3 * 4 * 9 * 1 * 2 * 4 * 1) = 210. - Andrew Howroyd, Feb 02 2021

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

FORMULA

a(n) = n!*W(1,n) where W(d,r) = (1/r)^d * [x^r] x*exp(Sum_{i>=1} Sum_{j>=1} (-1)^(i+1)*W(i*d, j)*x^(i*j)/i). - Andrew Howroyd, Jan 22 2021

EXAMPLE

There are 210 increasing labelings for this identity tree:

..........0............

........./ \...........

........0   0..........

......./   / \.........

......0   0   0........

...../    |     .......

....0     0     .......

.../            .......

..0             .......

PROG

(PARI) seq(n)={my(v=vector(n)); for(n = 1, #v, fordiv(n, d, my(r=n/d); v[d] += x^r*polcoef(exp(sum(i=1, r-1, (-1)^(i+1)*subst(v[i*d], x, x^i)/i) + O(x^r)), r-1)/r^d )); Vec(serlaplace(v[1]+O(x*x^n)))} \\ Andrew Howroyd, Jan 22 2021

CROSSREFS

Cf. A032305.

Sequence in context: A208820 A032301 A032213 * A032317 A032226 A001889

Adjacent sequences:  A225821 A225822 A225823 * A225825 A225826 A225827

KEYWORD

nonn

AUTHOR

Geoffrey Critzer, Jul 30 2013

EXTENSIONS

a(12)-a(19) from Alois P. Heinz, Aug 02 2013

Terms a(20) and beyond from Andrew Howroyd, Jan 22 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 27 13:59 EDT 2022. Contains 354896 sequences. (Running on oeis4.)