login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032287 "DIK" (bracelet, indistinct, unlabeled) transform of 1,2,3,4,... 5
1, 3, 6, 13, 24, 51, 97, 207, 428, 946, 2088, 4831, 11209, 26717, 64058, 155725, 380400, 936575, 2314105, 5744700, 14300416, 35708268, 89359536, 224121973, 563126689, 1417378191, 3572884062, 9019324297, 22797540648 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
From Petros Hadjicostas, Jun 21 2019: (Start)
Under Bower's transforms, the input sequence c = (c(m): m >= 1) describes how each part of size m in a composition is colored. In a composition (ordered partition) of n >= 1, a part of size m is assumed to be colored with one of c(m) colors.
Under the DIK transform, we are dealing with "dihedral compositions" of n >= 1. These are equivalence classes of ordered partitions of n such that two such ordered partitions are equivalent if one can be obtained from the other by rotation or reflection.
If the input sequence is c = (c(m): m >= 1), denote the output sequence under the DIK transform by b = (b(n): n >= 1); i.e., b(n) = (DIK c)(n) for n >= 1. If C(x) = Sum_{m >= 1} c(m)*x^m is the g.f. of the input sequence c, then the g.f. of b = DIK c is Sum_{n >= 1} b(n)*x^n = -(1/2) * Sum_{d >= 1} (phi(d)/d) * log(1 - C(x^d)) + (1 + C(x))^2/(4 * (1 - C(x^2))) - (1/4).
For the current sequence (a(n): n >= 1), the input sequence is c(m) = m for all m >= 1. That is, we are dealing with the so-called "m-color dihedral compositions". Here, a(n) is the number of dihedral compositions of n where each part of size m may be colored with one of m colors. For the linear and cyclic versions of such m-color compositions, see Agarwal (2000), Gibson (2017), and Gibson et al. (2018).
Since C(x) = x/(1 - x)^2, we have Sum_{n >= 1} a(n) * x^n = (1/2) * Sum_{d >= 1} (phi(d)/d) * log((1 - x^d)^2 / (1 - 3*x^d + x^(2*d))) + (1/2) * x * (1 + x - 2*x^2 + x^3 + x^4)/((1 - x)^2 * (1 + x - x^2) * (1 - x - x^2)), which is the g.f. given by Andrew Howroyd in the PARI program below.
Note that -Sum_{d >= 1} (phi(d)/d) * log (1 - C(x^d)) = Sum_{d >= 1} (phi(d)/d) * log((1 - x^d)^2 / (1 - 3*x^d + x^(2*d))) is the g.f. of the "m-color cyclic compositions" that appear in Gibson (2017) and Gibson et al. (2018). See sequence A032198, which is the CIK transform of sequence (c(m): m >= 1) = (m: m >= 1).
(End)
LINKS
A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
C. G. Bower, Transforms (2).
Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
FORMULA
From Petros Hadjicostas, Jun 21 2019: (Start)
a(n) = ( F(n+4) + (-1)^n * F(n-4) - 2 * (n + 1) + (1/n) * Sum_{d|n} phi(n/d) * L(2*d) )/2 for n >= 4, where F(n) = A000045(n) and L(n) = A000032(n) are the usual n-th Fibonacci and n-th Lucas numbers, respectively.
a(n) = (A032198(n) + A308747(n))/2 for n >= 1.
G.f.: (1/2) * Sum_{d >= 1} (phi(d)/d) * log((1 - x^d)^2 / (1 - 3*x^d + x^(2*d))) + (1/2) * x * (1 + x - 2*x^2 + x^3 + x^4)/((1 - x)^2 * (1 + x - x^2) * (1 - x - x^2)).
(End)
MATHEMATICA
seq[n_] := x(1 + x - 2 x^2 + x^3 + x^4)/((1 - x)^2 (1 - x - x^2)(1 + x - x^2)) + Sum[EulerPhi[d]/d Log[(1 - x^d)^2/(1 - 3 x^d + x^(2d)) + O[x]^(n+1)], {d, 1, n}] // CoefficientList[#, x]& // Rest // #/2&;
seq[30] (* Jean-François Alcover, Sep 17 2019, from PARI *)
PROG
(PARI) seq(n)={Vec(x*(1 + x - 2*x^2 + x^3 + x^4)/((1 - x)^2*(1 - x - x^2)*(1 + x - x^2)) + sum(d=1, n, eulerphi(d)/d*log((1 - x^d)^2/(1 - 3*x^d + x^(2*d)) + O(x*x^n))))/2} \\ Andrew Howroyd, Jun 20 2018
CROSSREFS
Sequence in context: A005196 A350851 A320286 * A199403 A006017 A147323
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 05:03 EST 2023. Contains 367531 sequences. (Running on oeis4.)