login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350851
Cumulative sums of the first ceiling(n/2)+1 elements of rows 0 to n in Pascal's triangle.
0
1, 3, 6, 13, 24, 50, 92, 191, 354, 736, 1374, 2860, 5370, 11182, 21090, 43909, 83112, 172958, 328340, 682862, 1299528, 2700820, 5150688, 10697070, 20437756, 42415272, 81170004, 168337168, 322613196, 668607412, 1283037084, 2657319103, 5105342946, 10567113352, 20323851054
OFFSET
0,2
EXAMPLE
The first ceiling(n/2)+1 elements from the first four rows of Pascal's are:
1
1 1
1 2
1 3 3
So a(0)=1, a(1)=a(0)+1+1=3, a(2)=a(1)+1+2=6, a(3)=a(2)+1+3+3=13.
PROG
(Python)
seq=[]; prev=[]; total=0
for n in range(30):
row=[1]
last=int(n/2)
for k in range(last):
row.append(prev[k]+prev[k+1])
if n%2==1:
row.append(row[-1])
prev=row
total+=sum(row)
seq.append(total)
print(seq)
CROSSREFS
Cf. A007318, A116496 (for n>=2, first differences).
Sequence in context: A358905 A027999 A005196 * A320286 A032287 A199403
KEYWORD
nonn,easy
AUTHOR
J. Stauduhar, Jan 18 2022
STATUS
approved