login
A030632
Numbers with 14 divisors.
13
192, 320, 448, 704, 832, 1088, 1216, 1458, 1472, 1856, 1984, 2368, 2624, 2752, 3008, 3392, 3645, 3776, 3904, 4288, 4544, 4672, 5056, 5103, 5312, 5696, 6208, 6464, 6592, 6848, 6976, 7232, 8019, 8128, 8192, 8384, 8768, 8896, 9477, 9536, 9664, 10048, 10432
OFFSET
1,1
COMMENTS
Numbers of the form p^13 (A138031) or p*q^6 (A189987), where p and q are distinct primes. - R. J. Mathar, Mar 01 2010
LINKS
MATHEMATICA
Select[Range[15000], DivisorSigma[0, #] == 14 &]
PROG
(PARI) is(n)=numdiv(n)==14 \\ Charles R Greathouse IV, Jun 19 2016
(Python)
from sympy import primepi, primerange, integer_nthroot
def A030632(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p**6) for p in primerange(integer_nthroot(x, 6)[0]+1))+primepi(integer_nthroot(x, 7)[0])-primepi(integer_nthroot(x, 13)[0])
return bisection(f, n, n) # Chai Wah Wu, Feb 22 2025
CROSSREFS
Cf. A092759.
Sequence in context: A344860 A045077 A234135 * A189987 A229361 A232940
KEYWORD
nonn,changed
AUTHOR
STATUS
approved