OFFSET
1,1
COMMENTS
Numbers of the form p^13 (A138031) or p*q^6 (A189987), where p and q are distinct primes. - R. J. Mathar, Mar 01 2010
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..1000
MATHEMATICA
Select[Range[15000], DivisorSigma[0, #] == 14 &]
PROG
(PARI) is(n)=numdiv(n)==14 \\ Charles R Greathouse IV, Jun 19 2016
(Python)
from sympy import primepi, primerange, integer_nthroot
def A030632(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p**6) for p in primerange(integer_nthroot(x, 6)[0]+1))+primepi(integer_nthroot(x, 7)[0])-primepi(integer_nthroot(x, 13)[0])
return bisection(f, n, n) # Chai Wah Wu, Feb 22 2025
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved