login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030485
Squares composed of digits {2, 5, 7}.
5
25, 225, 7225, 27225, 55225, 2772225, 227557225, 277722225, 27777222225, 72272257225, 2777772222225, 25772527522225, 277777722222225, 2775552752755225, 27522257555772225, 27777777222222225, 77525222275255225, 257727727257277225, 722555225555275225, 2275752775775227225
OFFSET
1,1
COMMENTS
We can easily prove that, except for the first term, all terms are of the form 100*m^2 + 100*m + 25 where mod(m, 10) is one of the numbers 1, 3, 6 or 8. Also we can show that all numbers of the form ((5 * 10^n - 5)/3)^2 where n is a natural number, are in the sequence. - Farideh Firoozbakht, Dec 09 2008
FORMULA
a(n) = A030487(n)^2. - M. F. Hasler, Dec 23 2012
MATHEMATICA
Flatten[Table[Select[FromDigits/@Tuples[{2, 5, 7}, n], IntegerQ[Sqrt[#]] &], {n, 17}]] (* The program takes a long time to run *) (* Harvey P. Dale, Jan 18 2015 *)
Select[(5Range[1, 9999, 2])^2, Complement[IntegerDigits[#], {2, 5, 7}] == {} &] (* Alonso del Arte, Feb 19 2020 *)
PROG
(PARI) fromTernary(n, d)=sum(i=0, d-1, [2, 5, 7][(n\3^i)%3+1]*10^i)
v=List([25]); for(d=0, 16, for(n=0, 3^d-1, if(issquare(t=225+1000*fromTernary(n, d)), listput(v, t); print1(t", ")))); Vec(v) \\ Charles R Greathouse IV, Dec 22 2012
CROSSREFS
Subsequence of A191486. Also subsequence of A017330. Cf. A030487.
Sequence in context: A189275 A048384 A191486 * A036509 A034981 A276240
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Dec 11 1999
EXTENSIONS
Extended and corrected by author, May 08 2000
a(17)-a(19) from Farideh Firoozbakht, Dec 09 2008
STATUS
approved