|
|
A030485
|
|
Squares composed of digits {2, 5, 7}.
|
|
4
|
|
|
25, 225, 7225, 27225, 55225, 2772225, 227557225, 277722225, 27777222225, 72272257225, 2777772222225, 25772527522225, 277777722222225, 2775552752755225, 27522257555772225, 27777777222222225, 77525222275255225
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
We can easily prove that, except for the first term, all terms are of the form 100*m^2 + 100*m + 25 where mod(m, 10) is one of the numbers 1, 3, 6 or 8. Also we can show that all numbers of the form ((5 * 10^n - 5)/3)^2 where n is a natural number, are in the sequence. - Farideh Firoozbakht, Dec 09 2008
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Flatten[Table[Select[FromDigits/@Tuples[{2, 5, 7}, n], IntegerQ[Sqrt[#]] &], {n, 17}]] (* The program takes a long time to run *) (* Harvey P. Dale, Jan 18 2015 *)
Select[(5Range[1, 9999, 2])^2, Complement[IntegerDigits[#], {2, 5, 7}] == {} &] (* Alonso del Arte, Feb 19 2020 *)
|
|
PROG
|
(PARI) fromTernary(n, d)=sum(i=0, d-1, [2, 5, 7][(n\3^i)%3+1]*10^i)
v=List([25]); for(d=0, 16, for(n=0, 3^d-1, if(issquare(t=225+1000*fromTernary(n, d)), listput(v, t); print1(t", ")))); Vec(v) \\ Charles R Greathouse IV, Dec 22 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Extended and corrected by author, May 08 2000
|
|
STATUS
|
approved
|
|
|
|