login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030461
Primes that are concatenations of two consecutive primes.
22
23, 3137, 8389, 151157, 157163, 167173, 199211, 233239, 251257, 257263, 263269, 271277, 331337, 353359, 373379, 433439, 467479, 509521, 523541, 541547, 601607, 653659, 661673, 677683, 727733, 941947, 971977, 10131019
OFFSET
1,1
COMMENTS
Any term in the sequence (apart from the first) must be a concatenation of consecutive primes differing by a multiple of 6. - Francis J. McDonnell, Jun 26 2005
LINKS
Georg Fischer, Table of n, a(n) for n = 1..5720 [First 1000 terms from Zak Seidov]
FORMULA
A030461(n) = concat(A030459(n),A030460(n)) = A045533( A000720( A030459(n))). - M. F. Hasler, Feb 06 2011
EXAMPLE
a(2) is 3137 because 31 and 37 are consecutive primes and after concatenation 3137 is also prime. - Enoch Haga, Sep 30 2007
MAPLE
conc:=proc(a, b) local bb: bb:=convert(b, base, 10): 10^nops(bb)*a+b end: p:=proc(n) local w: w:=conc(ithprime(n), ithprime(n+1)): if isprime(w)=true then w else fi end: seq(p(n), n=1..250); # Emeric Deutsch
MATHEMATICA
Select[Table[p=Prime[n]; FromDigits[Join[Flatten[IntegerDigits[{p, NextPrime[p]}]]]], {n, 170}], PrimeQ] (* Jayanta Basu, May 16 2013 *)
PROG
(PARI) {digits(n) = if(n==0, [0], u=[]; while(n>0, d=divrem(n, 10); n=d[1]; u=concat(d[2], u)); u)} {m=1185; p=2; while(p<m, q=nextprime(p+1); s=""; v=digits(p); for(j=1, length(v), s=concat(s, v[j])); v=digits(q); for(j=1, length(v), s=concat(s, v[j])); if(isprime(k=eval(s)), print1(k, ", ")); p=q)} \\ Klaus Brockhaus
(PARI) o=2; forprime(p=3, 1e4, isprime(eval(Str(o, o=p))) & print1(precprime(p-1), p", ")) \\ M. F. Hasler, Feb 06 2011
(Haskell)
a030461 n = a030461_list !! (n-1)
a030461_list = filter ((== 1) . a010051') a045533_list
-- Reinhard Zumkeller, Apr 20 2012
(Magma) [Seqint( Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)) ): n in [1..200 ]| IsPrime(Seqint( Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)) )) ]; // Marius A. Burtea, Mar 21 2019
CROSSREFS
Cf. A030459.
Subsequence of A045533.
Sequence in context: A233226 A233446 A088385 * A152521 A267692 A136363
KEYWORD
nonn,base
EXTENSIONS
Edited by N. J. A. Sloane, Apr 19 2009 at the suggestion of Zak Seidov
STATUS
approved