The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030461 Primes that are concatenations of two consecutive primes. 22
 23, 3137, 8389, 151157, 157163, 167173, 199211, 233239, 251257, 257263, 263269, 271277, 331337, 353359, 373379, 433439, 467479, 509521, 523541, 541547, 601607, 653659, 661673, 677683, 727733, 941947, 971977, 10131019 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Any term in the sequence (apart from the first) must be a concatenation of consecutive primes differing by a multiple of 6. - Francis J. McDonnell, Jun 26 2005 LINKS Georg Fischer, Table of n, a(n) for n = 1..5720 [First 1000 terms from Zak Seidov] FORMULA A030461(n) = concat(A030459(n),A030460(n)) = A045533( A000720( A030459(n))). - M. F. Hasler, Feb 06 2011 EXAMPLE a(2) is 3137 because 31 and 37 are consecutive primes and after concatenation 3137 is also prime. - Enoch Haga, Sep 30 2007 MAPLE conc:=proc(a, b) local bb: bb:=convert(b, base, 10): 10^nops(bb)*a+b end: p:=proc(n) local w: w:=conc(ithprime(n), ithprime(n+1)): if isprime(w)=true then w else fi end: seq(p(n), n=1..250); # Emeric Deutsch MATHEMATICA Select[Table[p=Prime[n]; FromDigits[Join[Flatten[IntegerDigits[{p, NextPrime[p]}]]]], {n, 170}], PrimeQ] (* Jayanta Basu, May 16 2013 *) PROG (PARI) {digits(n) = if(n==0, [0], u=[]; while(n>0, d=divrem(n, 10); n=d[1]; u=concat(d[2], u)); u)} {m=1185; p=2; while(p

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 27 03:58 EDT 2023. Contains 361553 sequences. (Running on oeis4.)