login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030185
Coefficients in expansion of E_2*E_4/(E_6*j) in powers of 1/j.
2
1, 720, 911520, 1301011200, 1958042030400, 3036508587993600, 4800606078996518400, 7692266556998230118400, 12448466349673022940816000, 20299324957420186505619072000, 33301542920000564787678367257600
OFFSET
1,2
REFERENCES
R. A. Rankin, The zeros of Eisenstein series, Publ. Ramanujan Institute 1 (1969), 137-144. (On page 139).
LINKS
Oscar E. González, An observation of Rankin on Hankel determinants, Department of Mathematics, University of Illinois at Urbana-Champaign, 2018.
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, AMS/IP Studies in Advanced Mathematics, vol. 7, 97--126, (1998). See esp. p. 110.
FORMULA
a(n) ~ Pi^(3/2) * 1728^n / (72 * Gamma(1/4)^4 * sqrt(3*n)). - Vaclav Kotesovec, Apr 07 2018
MATHEMATICA
nmax = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); A000521x = Normal[Series[(1728 E4[x]^3/(E4[x]^3 - E6[x]^2)), {x, 0, nmax}]]; expansion = CoefficientList[Series[E2[x]*E4[x]/(E6[x]*(1728 E4[x]^3/(E4[x]^3 - E6[x]^2))), {x, 0, nmax}], x]; A[x_] := Sum[c[k]/A000521x^k, {k, 0, nmax}]; Array[c, nmax] /. Solve[CoefficientList[Series[A[x], {x, 0, nmax}], x] == expansion][[1]] (* Vaclav Kotesovec, Apr 07 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010
STATUS
approved