login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030183
McKay-Thompson series of class 7A for the Monster group with a(0) = 10.
4
1, 10, 51, 204, 681, 1956, 5135, 12360, 28119, 60572, 125682, 251040, 487426, 920568, 1699611, 3070508, 5445510, 9490116, 16283793, 27537708, 45959775, 75760640, 123471327, 199081632, 317814988
OFFSET
-1,2
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 39.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of Hauptmodul for X_0^{+}(7).
Expansion of (h + 7)^2 / h, where h = (eta(q) / eta(q^7))^4 in powers of q.
a(n) = A007264(n) = A045489(n) unless n = 0.
a(n) ~ exp(4*Pi*sqrt(n/7)) / (sqrt(2) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
G.f. = 1/q + 10 + 51*q + 204*q^2 + 681*q^3 + 1956*q^4 + 5135*q^5 + 12360*q^6 + ...
MATHEMATICA
a[ n_] := With[ {A = q (QPochhammer[ q^7] / QPochhammer[ q])^4}, SeriesCoefficient[ (1 + 7 A)^2 / A, {q, 0, n}]]; (* Michael Somos, Mar 30 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^7 + A) / eta(x + A))^4; polcoeff( (1 + 7 * x * A)^2 / A, n))}; /* Michael Somos, Feb 02 2012 */
CROSSREFS
Sequence in context: A077044 A069038 A213563 * A224327 A219573 A135242
KEYWORD
nonn
AUTHOR
STATUS
approved