login
A029783
Exclusionary squares: numbers n such that no digit of n is present in n^2.
18
2, 3, 4, 7, 8, 9, 17, 18, 22, 24, 29, 33, 34, 38, 39, 44, 47, 53, 54, 57, 58, 59, 62, 67, 72, 77, 79, 84, 88, 92, 94, 144, 157, 158, 173, 187, 188, 192, 194, 209, 212, 224, 237, 238, 244, 247, 253, 257, 259, 307, 313, 314, 333, 334, 338, 349, 353, 359
OFFSET
1,1
COMMENTS
Complement of A189056; A076493(a(n)) = 0. - Reinhard Zumkeller, Apr 16 2011
A258682(a(n)) = a(n)^2. - Reinhard Zumkeller, Jun 07 2015
a(78) = 567 and a(112) = 854 are the only two numbers k such that the equation k^2 = m uses only once each of the digits 1 to 9 (reference David Wells). Exactly: 567^2 = 321489, and, 854^2 = 729316 (see A059930). - Bernard Schott, Jan 28 2021
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, 1997, page 144, entry 567.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
Michael S. Branicky, Python program
Cliff Pickover et al, Exclusionary Squares and Cubes, rec.puzzles topic on google groups, January 2002
EXAMPLE
From M. F. Hasler, Oct 16 2018: (Start)
It is easy to construct infinite subsequences of the form S(a,b)(n) = a*R(n) + b, where R(n) = (10^n-1)/9 is the repunit of length n. These are:
S(3,0) = (3, 33, 333, ...), S(3,1) = (4, 34, 334, 3334, ...), S(3,5) = (8, 38, 338, ...), S(6,0) = (6, 66, 666, ...), S(6,1) = (7, 67, 667, ...), S(6,6) = (72, 672, 6672, ...) (excluding n=1), S(6,7) = (673, 6673, ...) (excluding also n=2 here) and S(6,-7) = (59, 659, 6659, ...). (End)
MATHEMATICA
Select[Range[1000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^2]] == {} &] (* Tanya Khovanova, Dec 25 2006 *)
PROG
(Haskell)
a029783 n = a029783_list !! (n-1)
a029783_list = filter (\x -> a258682 x == x ^ 2) [1..]
-- Reinhard Zumkeller, Jun 07 2015, Apr 16 2011
(PARI) is_A029783(n)=!#setintersect(Set(digits(n)), Set(digits(n^2))) \\ M. F. Hasler, Oct 16 2018
(Python) # see linked program
(Python)
from itertools import count, islice
def A029783_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:not set(str(n))&set(str(n**2)), count(max(startvalue, 0)))
A029783_list = list(islice(A029783_gen(), 30)) # Chai Wah Wu, Feb 12 2023
CROSSREFS
Cf. A059930 (n and n^2 use different digits), A112736 (numbers whose squares are exclusionary).
Sequence in context: A058075 A243495 A340324 * A112736 A059930 A125965
KEYWORD
nonn,base
EXTENSIONS
Definition slightly reworded at the suggestion of Franklin T. Adams-Watters by M. F. Hasler, Oct 16 2018
STATUS
approved