login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029735
Numbers k such that k^3 is palindromic in base 16.
2
0, 1, 2, 17, 257, 273, 4097, 4369, 65537, 65793, 69649, 1048577, 1052929, 1114129, 16777217, 16781313, 16843009, 16847105, 17825809, 17829905, 268435457, 268505089, 269484289, 285212689, 4294967297, 4295032833, 4296019969, 4296085505, 4311744769, 4563402769
OFFSET
1,3
LINKS
Patrick De Geest, World!Of Numbers, Palindromic cubes in bases 2 to 17.
PROG
(Python)
A029735_list, j = [], 0
for i in range(10**9):
s = format(j, 'x')
if s == s[::-1]:
A029735_list.append(i)
j += 3*i*(i+1)+1 # Chai Wah Wu, Dec 20 2015
(PARI) isok(n) = my(vd = digits(n^3, 16)); Vecrev(vd) == vd; \\ Michel Marcus, Dec 21 2015
(Magma) [n: n in [0..2*10^7] | Intseq(n^3, 16) eq Reverse(Intseq(n^3, 16))]; // Vincenzo Librandi, Dec 22 2015
CROSSREFS
Cf. A029736.
Sequence in context: A099702 A253549 A002590 * A291206 A037896 A099714
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
a(25)-a(30) from Giovanni Resta, Aug 06 2019
STATUS
approved