Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Dec 03 2024 20:16:55
%S 0,1,2,17,257,273,4097,4369,65537,65793,69649,1048577,1052929,1114129,
%T 16777217,16781313,16843009,16847105,17825809,17829905,268435457,
%U 268505089,269484289,285212689,4294967297,4295032833,4296019969,4296085505,4311744769,4563402769
%N Numbers k such that k^3 is palindromic in base 16.
%H Giovanni Resta, <a href="/A029735/b029735.txt">Table of n, a(n) for n = 1..49</a>
%H Patrick De Geest, <a href="https://www.worldofnumbers.com/nobase10pg4.htm">World!Of Numbers</a>, Palindromic cubes in bases 2 to 17.
%o (Python)
%o A029735_list, j = [], 0
%o for i in range(10**9):
%o s = format(j,'x')
%o if s == s[::-1]:
%o A029735_list.append(i)
%o j += 3*i*(i+1)+1 # _Chai Wah Wu_, Dec 20 2015
%o (PARI) isok(n) = my(vd = digits(n^3, 16)); Vecrev(vd) == vd; \\ _Michel Marcus_, Dec 21 2015
%o (Magma) [n: n in [0..2*10^7] | Intseq(n^3, 16) eq Reverse(Intseq(n^3, 16))]; // _Vincenzo Librandi_, Dec 22 2015
%Y Cf. A029736.
%K nonn,base
%O 1,3
%A _Patrick De Geest_, May 15 1998
%E a(25)-a(30) from _Giovanni Resta_, Aug 06 2019