login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029040
Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^8)).
0
1, 1, 1, 2, 2, 3, 4, 4, 6, 7, 8, 10, 11, 13, 15, 17, 20, 22, 25, 28, 31, 35, 38, 42, 47, 51, 56, 61, 66, 72, 78, 84, 91, 98, 105, 113, 121, 129, 138, 147, 157, 167, 177, 188, 199, 211, 223, 235, 249, 262, 276, 291, 305
OFFSET
0,4
COMMENTS
a(n) is the number of partitions of n into parts 1, 3, 5, and 8. - Joerg Arndt, Jan 18 2017
LINKS
FORMULA
G.f.: 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^8)).
a(n) = floor((2*n^3+51*n^2+384*n+1368+180*(1+(-1)^floor((n+1)/2))*(-1)^floor(n/4))/1440). - Tani Akinari, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^3) (1 - x^5) (1 - x^8)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Jan 17 2017 *)
PROG
(PARI) a(n)=(2*n^3+51*n^2+384*n+1368+(1+(-1)^((n+1)\2))*(-1)^(n\4)*180)\1440 \\ Charles R Greathouse IV, Jun 28 2013
CROSSREFS
Sequence in context: A239950 A077768 A143038 * A053281 A339395 A228117
KEYWORD
nonn,easy
STATUS
approved