OFFSET
0,4
COMMENTS
a(n) is the number of partitions of n into parts 1, 3, 5, and 8. - Joerg Arndt, Jan 18 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,1,-1,0,0,0,0,-1,1,-1,1,0,1,-1).
FORMULA
G.f.: 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^8)).
a(n) = floor((2*n^3+51*n^2+384*n+1368+180*(1+(-1)^floor((n+1)/2))*(-1)^floor(n/4))/1440). - Tani Akinari, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^3) (1 - x^5) (1 - x^8)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Jan 17 2017 *)
PROG
(PARI) a(n)=(2*n^3+51*n^2+384*n+1368+(1+(-1)^((n+1)\2))*(-1)^(n\4)*180)\1440 \\ Charles R Greathouse IV, Jun 28 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved