login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029041
Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^9)).
1
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 12, 14, 17, 18, 20, 24, 26, 29, 33, 35, 39, 44, 47, 51, 57, 61, 66, 73, 77, 83, 91, 96, 103, 112, 118, 126, 136, 143, 152, 163, 171, 181, 194, 203, 214, 228, 238, 251, 266, 277, 291, 308, 321, 336, 354, 368, 385, 405
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 5, and 9. - Alois P. Heinz, Oct 01 2014
LINKS
FORMULA
a(n) = floor((n^3+27*n^2+204*n+700+10*[3*n+29,4,0][(n mod 3)+1])/810). - Tani Akinari, Oct 01 2014
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)(1-x^9)), {x, 0, 90}], x] (* Jinyuan Wang, Mar 24 2020 *)
PROG
(PARI) a(n)=round((n+9)*(n^2+18*n+52)/810+(n\3+1)*(3*!(n%3)-1)/27+[12, -5, -10][n%3+1]/81) \\ Tani Akinari, May 23 2014
(PARI) a(n)=(n^3+27*n^2+204*n+700+10*[3*n+29, 4, 0][n%3+1])\810 \\ Tani Akinari, Oct 01 2014
(PARI) Vec(1/((1-x)*(1-x^3)*(1-x^5)*(1-x^9)) + O(x^80)) \\ Michel Marcus, Oct 01 2014
CROSSREFS
Sequence in context: A305713 A259201 A342518 * A112582 A104648 A141271
KEYWORD
nonn,easy
STATUS
approved