login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028878
a(n) = (n+3)^2 - 6.
8
3, 10, 19, 30, 43, 58, 75, 94, 115, 138, 163, 190, 219, 250, 283, 318, 355, 394, 435, 478, 523, 570, 619, 670, 723, 778, 835, 894, 955, 1018, 1083, 1150, 1219, 1290, 1363, 1438, 1515, 1594, 1675, 1758, 1843, 1930, 2019, 2110, 2203, 2298, 2395
OFFSET
0,1
COMMENTS
a(n-3) = n^2 - 6, n>=0, with a(-3) = -6, a(-2) = -5, a(-1) = -2 gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 24 for b = 2*n. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 16 2013
FORMULA
a(n) = a(n-1) + 2*n + 5 (with a(0)=3). - Vincenzo Librandi, Aug 05 2010
From Bruno Berselli, Sep 02 2011: (Start)
G.f.: (x+1)*(3-2*x)/(1-x)^3.
a(n) = a(-n-6).
a(n) mod (n+1) = n-1. (End)
a(n) = A000290(n+3) - 6. - Omar E. Pol, Dec 12 2012
E.g.f.: (x^2 + 7*x + 3)*exp(x). - G. C. Greubel, Aug 19 2017
From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (47 - 5*sqrt(6)*Pi*cot(sqrt(6)*Pi))/60.
Sum_{n>=0} (-1)^n/a(n) = (-23 + 5*sqrt(6)*Pi*cosec(sqrt(6)*Pi))/60. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (5*sqrt(2/21)/3)*sin(sqrt(7)*Pi)/sin(sqrt(6)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(15/2)*sin(sqrt(5)*Pi)/sin(sqrt(6)*Pi). (End)
MAPLE
A028878:=n->(n+3)^2-6: seq(A028878(n), n=0..100); # Wesley Ivan Hurt, Apr 28 2017
MATHEMATICA
Table[(n + 3)^2 - 6, {n, 0, 50}] (* G. C. Greubel, Aug 19 2017 *)
PROG
(PARI) a(n)=(n+3)^2-6 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A000290.
Sequence in context: A064027 A321543 A212456 * A010896 A234940 A135446
KEYWORD
nonn,easy
EXTENSIONS
Definition corrected by Omar E. Pol, Jul 27 2009
STATUS
approved