OFFSET
2,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..1000
Index entries for linear recurrences with constant coefficients, signature (8,-26,45,-45,26,-8,1).
FORMULA
G.f.: x^2*(1+14*x+5*x^2-4*x^3) / ((1-x)^5*(1-3*x+x^2)). - Colin Barker, Feb 20 2016
From G. C. Greubel, Sep 28 2019: (Start)
a(n) = Sum_{j=0..n-2} binomial(2*n-j+1, 2*(n-j-2)).
a(n) = Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6. (End)
MAPLE
with(combinat); seq(fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6, n=2..40); # G. C. Greubel, Sep 28 2019
MATHEMATICA
Table[Fibonacci[2*n+7] - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6, {n, 2, 40}]
PROG
(PARI) vector(30, n, my(m=n+1); fibonacci(2*m+7) - (4*m^4 +12*m^3 +35*m^2 +75*m +78)/6) \\ G. C. Greubel, Sep 28 2019
(Magma) [Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6: n in [2..40]]; // G. C. Greubel, Sep 28 2019
(Sage) [fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6 for n in (2..40)] # G. C. Greubel, Sep 28 2019
(GAP) List([2..40], n-> Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6 ); # G. C. Greubel, Sep 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(22) onward added by G. C. Greubel, Sep 28 2019
STATUS
approved