login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027946
a(n) is the sum of the non-Fibonacci numbers in row n of array T given by A027935, computed as T(n,m) + T(n,m+1) + ... + T(n,n-1), where m = floor((n+2)/2).
1
0, 0, 0, 4, 7, 23, 42, 106, 200, 456, 879, 1903, 3718, 7814, 15396, 31780, 62951, 128487, 255378, 517522, 1030864, 2079440, 4147935, 8342239, 16655822, 33433038, 66791052, 133899916, 267603415, 536038871, 1071563514, 2145305338
OFFSET
0,4
FORMULA
G.f.: x^3*(4 - 5*x - 2*x^2 + 2*x^3)/((1-x)*(1-2*x)*(1+x-x^2)*(1-x-x^2)).
From G. C. Greubel, Sep 28 2019: (Start)
a(n) = (2^(n+1) - 2 - Fibonacci(n+3) - (-1)^n*Fibonacci(n))/2, n > 0.
a(2*n) = 4^n - 1 - Fibonacci(2*n+2), n > 0.
a(2*n+1) = 2^(2*n+1) - 1 - Fibonacci(2*n+2). (End)
MAPLE
with(combinat); seq(`if`(n=0, 0, (2^(n+1)-2-fibonacci(n+3) -(-1)^n* fibonacci(n))/2), n=0..40); # G. C. Greubel, Sep 28 2019
MATHEMATICA
Table[If[n==0, 0, (2^(n+1) -2 -Fibonacci[n+3] -(-1)^n*Fibonacci[n])/2], {n, 0, 40}] (* G. C. Greubel, Sep 28 2019 *)
PROG
(PARI) concat([0], vector(40, n, (2^(n+1)-2-fibonacci(n+3) -(-1)^n* fibonacci(n))/2)) \\ G. C. Greubel, Sep 28 2019
(Magma) [0] cat [(2^(n+1)-2-Fibonacci(n+3) -(-1)^n*Fibonacci(n))/2: n in [1..40]]; // G. C. Greubel, Sep 28 2019
(Sage) [0]+[(2^(n+1)-2-fibonacci(n+3) -(-1)^n*fibonacci(n))/2 for n in (1..40)] # G. C. Greubel, Sep 28 2019
(GAP) Concatenation([0], List([1..40], n-> (2^(n+1)-2-Fibonacci(n+3) -(-1)^n*Fibonacci(n))/2)); # G. C. Greubel, Sep 28 2019
CROSSREFS
Sequence in context: A086968 A101824 A270238 * A348478 A363543 A242315
KEYWORD
nonn
STATUS
approved