OFFSET
3,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 3..1000
Index entries for linear recurrences with constant coefficients, signature (9,-34,71,-90,71,-34,9,-1).
FORMULA
G.f.: x^3*(1+20*x+20*x^2-8*x^3-x^4) / ((1-x)^6*(1-3*x+x^2)). - Colin Barker, Feb 20 2016
a(n) = Fibonacci(2*n+7) - (195 + 186*n + 90*n^2 + 35*n^3 + 4*n^5)/15. - G. C. Greubel, Sep 28 2019
MAPLE
with(combinat); seq(fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15, n=3..30); # G. C. Greubel, Sep 28 2019
MATHEMATICA
Table[Fibonacci[2*n+7] -(195 +186*n +90*n^2 +35*n^3 +4*n^5)/15, {n, 3, 30}] (* G. C. Greubel, Sep 28 2019 *)
PROG
(PARI) vector(30, n, my(m=n+2); fibonacci(2*m+7) - (195 +186*m +90*m^2 +35*m^3 +4*m^5)/15) \\ G. C. Greubel, Sep 28 2019
(Magma) [Fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15: n in [3..30]]; // G. C. Greubel, Sep 28 2019
(Sage) [fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15 for n in (3..30)] # G. C. Greubel, Sep 28 2019
(GAP) List([3..30], n-> Fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15 ); # G. C. Greubel, Sep 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(23) onward added by G. C. Greubel, Sep 28 2019
STATUS
approved