login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027938 a(n) = T(2n, n+2), T given by A027935. 1
1, 16, 92, 365, 1204, 3588, 10093, 27476, 73440, 194345, 511576, 1342936, 3520457, 9222440, 24151764, 63238773, 165571628, 433484476, 1134891605, 2971201740, 7778726776 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 2..1000

Index entries for linear recurrences with constant coefficients, signature (7,-19,26,-19,7,-1).

FORMULA

G.f.: x^2*(1+9*x-x^2-x^3) / ((1-x)^4*(1-3*x+x^2)). - Colin Barker, Dec 10 2015

a(n) = Fibonacci(2*n+5) - (4*n^3 + 6*n^2 + 14*n + 15)/3. - G. C. Greubel, Sep 28 2019

MAPLE

with(combinat); seq(fibonacci(2*n+5) - (4*n^3 +6*n^2 +14*n +15)/3, n=2..30); # G. C. Greubel, Sep 28 2019

MATHEMATICA

Table[Fibonacci[2*n+5] -(4*n^3 +6*n^2 +14*n +15)/3, {n, 2, 30}] (* G. C. Greubel, Sep 28 2019 *)

PROG

(PARI) vector(30, n, my(m=n+1); fibonacci(2*m+5) - (4*m^3 +6*m^2 +14*m +15)/3) \\ G. C. Greubel, Sep 28 2019

(MAGMA) [Fibonacci(2*n+5) - (4*n^3 +6*n^2 +14*n +15)/3: n in [2..30]]; // G. C. Greubel, Sep 28 2019

(Sage) [fibonacci(2*n+5) - (4*n^3 +6*n^2 +14*n +15)/3 for n in (2..30)] # G. C. Greubel, Sep 28 2019

(GAP) List([2..30], n-> Fibonacci(2*n+5) - (4*n^3 +6*n^2 +14*n +15)/3 ); # G. C. Greubel, Sep 28 2019

CROSSREFS

Cf. A000045, A027935.

Sequence in context: A047674 A153029 A170920 * A301527 A185458 A108676

Adjacent sequences:  A027935 A027936 A027937 * A027939 A027940 A027941

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 14:29 EST 2022. Contains 350481 sequences. (Running on oeis4.)