login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027929
a(n) = T(n, 2*n-6), T given by A027926.
2
1, 2, 5, 13, 33, 79, 176, 365, 709, 1300, 2267, 3785, 6085, 9465, 14302, 21065, 30329, 42790, 59281, 80789, 108473, 143683, 187980, 243157, 311261, 394616, 495847, 617905, 764093, 938093, 1143994, 1386321, 1670065, 2000714
OFFSET
3,2
FORMULA
a(n) = Sum_{k=0..3} binomial(n-k, 6-2*k). - Len Smiley, Oct 20 2001
From Colin Barker, May 01 2012: (Start)
a(n) = (3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720.
G.f.: x^3*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)/(1-x)^7. (End)
E.g.f.: (3600 - 2160*x + 720*x^2 - 120*x^3 + 30*x^4 + x^6)*exp(x)/720 - 5 + 2*x - x^2/2. - G. C. Greubel, Sep 06 2019
MAPLE
seq((3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720, n=3..40); # G. C. Greubel, Sep 06 2019
MATHEMATICA
CoefficientList[Series[(1-x+x^2)(1-4x+7x^2-4x^3+x^4)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *)
PROG
(PARI) vector(40, n, m=n+2; (3600 -3420*m +1684*m^2 -525*m^3 +115*m^4 -15*m^5 +m^6)/720) \\ G. C. Greubel, Sep 06 2019
(Magma) [(3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720: n in [3..40]]; // G. C. Greubel, Sep 06 2019
(Sage) [(3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720 for n in (3..40)] # G. C. Greubel, Sep 06 2019
(GAP) List([3..40], n-> (3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720); G. C. Greubel, Sep 06 2019
CROSSREFS
Cf. A228074.
Sequence in context: A220739 A337282 A366117 * A001659 A088921 A005183
KEYWORD
nonn,easy
STATUS
approved