OFFSET
3,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 3..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = Sum_{k=0..3} binomial(n-k, 6-2*k). - Len Smiley, Oct 20 2001
From Colin Barker, May 01 2012: (Start)
a(n) = (3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720.
G.f.: x^3*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)/(1-x)^7. (End)
E.g.f.: (3600 - 2160*x + 720*x^2 - 120*x^3 + 30*x^4 + x^6)*exp(x)/720 - 5 + 2*x - x^2/2. - G. C. Greubel, Sep 06 2019
MAPLE
seq((3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720, n=3..40); # G. C. Greubel, Sep 06 2019
MATHEMATICA
CoefficientList[Series[(1-x+x^2)(1-4x+7x^2-4x^3+x^4)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *)
PROG
(PARI) vector(40, n, m=n+2; (3600 -3420*m +1684*m^2 -525*m^3 +115*m^4 -15*m^5 +m^6)/720) \\ G. C. Greubel, Sep 06 2019
(Magma) [(3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720: n in [3..40]]; // G. C. Greubel, Sep 06 2019
(Sage) [(3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720 for n in (3..40)] # G. C. Greubel, Sep 06 2019
(GAP) List([3..40], n-> (3600 -3420*n +1684*n^2 -525*n^3 +115*n^4 -15*n^5 +n^6)/720); G. C. Greubel, Sep 06 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved