|
|
|
|
0, 0, 2, 5, 13, 33, 75, 166, 358, 754, 1564, 3203, 6491, 13043, 26021, 51596, 101772, 199828, 390790, 761537, 1479337, 2865589, 5536719, 10673010, 20530866, 39417766, 75545728, 144551167, 276172727, 526908583, 1003986313, 1910718488, 3632257048, 6897610216, 13085528650, 24801630845, 46966595909, 88866759433
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
REFERENCES
|
R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.
|
|
LINKS
|
Table of n, a(n) for n=0..37.
Index entries for linear recurrences with constant coefficients, signature (3,-1,-1,-3,1,1,1).
|
|
FORMULA
|
From Colin Barker, Sep 13 2020: (Start)
G.f.: x^2*(2 - x + x^3) / ((1 - x)*(1 - x - x^2 - x^3)^2).
a(n) = 3*a(n-1) - a(n-2) - a(n-3) - 3*a(n-4) + a(n-5) + a(n-6) + a(n-7) for n>6.
(End)
|
|
CROSSREFS
|
Cf. A000073, A337281.
Sequence in context: A219230 A108890 A220739 * A027929 A001659 A088921
Adjacent sequences: A337279 A337280 A337281 * A337283 A337284 A337285
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Sep 12 2020
|
|
STATUS
|
approved
|
|
|
|