OFFSET
3,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 3..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = (n-2)*(n^4 - 8*n^3 + 39*n^2 - 92*n + 180)/120.
a(n) = C(n,n-1) + C(n+1,n-2) + C(n+2,n-3) with offset 1. - Zerinvary Lajos, May 29 2007
G.f.: x^3*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)/(1-x)^6. - Colin Barker, Mar 18 2012
E.g.f.: 3 + x -(360 - 240*x + 60*x^2 - 20*x^3 - x^5)*exp(x)/120. - G. C. Greubel, Sep 06 2019
MAPLE
seq(binomial(n, n-1)+binomial(n+1, n-2)+binomial(n+2, n-3), n=1..35); # Zerinvary Lajos, May 29 2007
MATHEMATICA
CoefficientList[Series[(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 22 2012 *)
PROG
(Magma) [(n-2)*(n^4-8*n^3+39*n^2-92*n+180)/120: n in [3..40]]; // Vincenzo Librandi, Apr 22 2012
(PARI) vector(40, n, m=n+2; n*(m^4 -8*m^3 +39*m^2 -92*m +180)/120) \\ G. C. Greubel, Sep 06 2019
(Sage) [(n-2)*(n^4 -8*n^3 +39*n^2 -92*n +180)/120 for n in (3..40)] # G. C. Greubel, Sep 06 2019
(GAP) List([3..40], n-> (n-2)*(n^4 -8*n^3 +39*n^2 -92*n +180)/120); # G. C. Greubel, Sep 06 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved