login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026933
Self-convolution of array T given by A008288.
6
1, 2, 11, 52, 269, 1414, 7575, 41064, 224665, 1237898, 6859555, 38187164, 213408805, 1196524814, 6727323439, 37915058384, 214140178225, 1211694546194, 6867622511675, 38981807403268, 221562006394173, 1260814207833750, 7182599953332423, 40958645048598840, 233779564099963081
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} D(n-k,k)^2 where D(n,k) = A008288(n,k) are the Delannoy numbers. - Paul D. Hanna, Jan 10 2012
G.f.: 1/((1+x)*sqrt(1-6*x+x^2)). - Vladeta Jovovic, May 13 2003
a(n) = (-1)^n*Sum_{k=0...n} (-1)^k*A001850(k). - Benoit Cloitre, Sep 28 2005
G.f.: exp( Sum_{n>=1} A002203(n)^2/2 * x^n/n ), where A002203 are the companion Pell numbers. - Paul D. Hanna, Jan 10 2012
Self-convolution yields A204062; self-convolution of A204061. - Paul D. Hanna, Jan 10 2012
From Vaclav Kotesovec, Oct 08 2012: (Start)
Recurrence: n*a(n) = (5*n-3)*a(n-1) + (5*n-2)*a(n-2) - (n-1)*a(n-3).
a(n) ~ sqrt(24+17*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). (End)
0 = +a(n)*(+a(n+1) -8*a(n+2) -7*a(n+3) +2*a(n+4)) +a(n+1)*(-2*a(n+1) +22*a(n+2) +20*a(n+3) -7*a(n+4)) +a(n+2)*(+30*a(n+2) +22*a(n+3) -8*a(n+4)) +a(n+3)*(-2*a(n+3) +a(n+4)) for all n in Z. - Michael Somos, Jun 27 2017
MATHEMATICA
Table[SeriesCoefficient[1/(1+x)/Sqrt[1-6*x+x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)
a[ n_]:= Sum[ SeriesCoefficient[ SeriesCoefficient[1/(1-x-y-x*y) , {x, 0, n-k}] , {y, 0, k}]^2, {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
A026933[n_]:= Sum[(Binomial[n, k]*Hypergeometric2F1[-k, k-n, -n, -1])^2, {k, 0, n}];
Table[A026933[n], {n, 0, 40}] (* G. C. Greubel, May 25 2021 *)
PROG
(PARI) /* Sum of squares of Delannoy numbers: */
{a(n)=sum(k=0, n, polcoeff(polcoeff(1/(1-x-y-x*y +x*O(x^n)+y*O(y^k)), n-k, x), k, y)^2)} \\ Paul D. Hanna, Jan 10 2012
(PARI) /* Involving squares of companion Pell numbers: */
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)), n)}
{a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^2/2*x^k/k)+x*O(x^n)), n)}
\\ Paul D. Hanna, Jan 10 2012
(PARI) my(x='x+O('x^66)); Vec( 1/(1+x)/sqrt(1-6*x+x^2) ) \\ Joerg Arndt, May 04 2013
(Sage)
def A026933_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1+x)*sqrt(1-6*x+x^2)) ).list()
A026933_list(40) # G. C. Greubel, May 25 2021
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, May 13 2003
STATUS
approved