Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 May 26 2021 02:15:32
%S 1,2,11,52,269,1414,7575,41064,224665,1237898,6859555,38187164,
%T 213408805,1196524814,6727323439,37915058384,214140178225,
%U 1211694546194,6867622511675,38981807403268,221562006394173,1260814207833750,7182599953332423,40958645048598840,233779564099963081
%N Self-convolution of array T given by A008288.
%H Vincenzo Librandi, <a href="/A026933/b026933.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = Sum_{k=0..n} D(n-k,k)^2 where D(n,k) = A008288(n,k) are the Delannoy numbers. - _Paul D. Hanna_, Jan 10 2012
%F G.f.: 1/((1+x)*sqrt(1-6*x+x^2)). - _Vladeta Jovovic_, May 13 2003
%F a(n) = (-1)^n*Sum_{k=0...n} (-1)^k*A001850(k). - _Benoit Cloitre_, Sep 28 2005
%F G.f.: exp( Sum_{n>=1} A002203(n)^2/2 * x^n/n ), where A002203 are the companion Pell numbers. - _Paul D. Hanna_, Jan 10 2012
%F Self-convolution yields A204062; self-convolution of A204061. - _Paul D. Hanna_, Jan 10 2012
%F From _Vaclav Kotesovec_, Oct 08 2012: (Start)
%F Recurrence: n*a(n) = (5*n-3)*a(n-1) + (5*n-2)*a(n-2) - (n-1)*a(n-3).
%F a(n) ~ sqrt(24+17*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). (End)
%F 0 = +a(n)*(+a(n+1) -8*a(n+2) -7*a(n+3) +2*a(n+4)) +a(n+1)*(-2*a(n+1) +22*a(n+2) +20*a(n+3) -7*a(n+4)) +a(n+2)*(+30*a(n+2) +22*a(n+3) -8*a(n+4)) +a(n+3)*(-2*a(n+3) +a(n+4)) for all n in Z. - _Michael Somos_, Jun 27 2017
%t Table[SeriesCoefficient[1/(1+x)/Sqrt[1-6*x+x^2],{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 08 2012 *)
%t a[ n_]:= Sum[ SeriesCoefficient[ SeriesCoefficient[1/(1-x-y-x*y) , {x,0,n-k}] , {y, 0, k}]^2, {k, 0, n}]; (* _Michael Somos_, Jun 27 2017 *)
%t A026933[n_]:= Sum[(Binomial[n, k]*Hypergeometric2F1[-k,k-n,-n,-1])^2, {k,0,n}];
%t Table[A026933[n], {n, 0, 40}] (* _G. C. Greubel_, May 25 2021 *)
%o (PARI) /* Sum of squares of Delannoy numbers: */
%o {a(n)=sum(k=0,n,polcoeff(polcoeff(1/(1-x-y-x*y +x*O(x^n)+y*O(y^k)),n-k,x),k,y)^2)} \\ _Paul D. Hanna_, Jan 10 2012
%o (PARI) /* Involving squares of companion Pell numbers: */
%o {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
%o {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^2/2*x^k/k)+x*O(x^n)), n)}
%o \\ _Paul D. Hanna_, Jan 10 2012
%o (PARI) my(x='x+O('x^66)); Vec( 1/(1+x)/sqrt(1-6*x+x^2) ) \\ _Joerg Arndt_, May 04 2013
%o (Sage)
%o def A026933_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/((1+x)*sqrt(1-6*x+x^2)) ).list()
%o A026933_list(40) # _G. C. Greubel_, May 25 2021
%Y Cf. A002203, A008288, A204061, A204062.
%K nonn
%O 0,2
%A _Clark Kimberling_
%E More terms from _Vladeta Jovovic_, May 13 2003