OFFSET
0,13
COMMENTS
Also, number of partitions of n such that if k is the largest part, then k occurs exactly 3 times and each of the numbers 1,2,...,k-1 occur at least once (these are the conjugates of the partitions described in the definition). Example: a(14)=3 because we have [3,3,3,2,2,1],[3,3,3,2,1,1,1] and [2,2,2,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 17 2006
For n > 3, a(n) is the Euler transform of [0,0,0,1,1,1,1] joined with the period 2 sequence [0,1, ...]. - Georg Fischer, Aug 18 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
From Emeric Deutsch, Apr 17 2006: (Start)
G.f.: (x^3)*Product_{j=4..infinity} (1+x^j).
G.f.: Sum_{k=1..infinity} x^(k*(k+5)/2)/(Product_{j=1..k-1} (1-x^j)). (End)
a(n) = A025149(n-3), n>3. - R. J. Mathar, Jul 31 2008
a(n) ~ exp(Pi*sqrt(n/3)) / (32*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015
EXAMPLE
a(14) = 3 because we have [11,3], [7,4,3] and [6,5,3].
MAPLE
g:=x^3*product(1+x^j, j=4..80): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=1..59); # Emeric Deutsch, Apr 17 2006
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`((i-3)*(i+4)/2<n, 0,
add(b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> `if`(n<3, 0, b(n-3$2)):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 07 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-3)(i+4)/2 < n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := If[n<3, 0, b[n-3, n-3]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
nmax = 100; CoefficientList[Series[x^3/((1+x)*(1+x^2)*(1+x^3)) * Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)
Join[{0}, Table[Count[Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 3], {n, 1, 66}]] (* Robert Price, Jun 13 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Apr 17 2006
STATUS
approved