login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026396
Sum_{T(i,j)}, 0<=j<=i, 0<=i<=n, where T is the array in A026386.
1
3, 7, 17, 37, 87, 187, 437, 937, 2187, 4687, 10937, 23437, 54687, 117187, 273437, 585937, 1367187, 2929687, 6835937, 14648437, 34179687, 73242187, 170898437, 366210937, 854492187, 1831054687, 4272460937, 9155273437, 21362304687, 45776367187, 106811523437
OFFSET
0,1
FORMULA
G.f.: (3+4*x-5*x^2) / ((1-x)*(1-5*x^2)). - Ralf Stephan, Apr 30 2004
From Colin Barker, Nov 25 2016: (Start)
a(n) = (7*5^(n/2) - 1)/2 for n even.
a(n) = (6*5^((n+1)/2) - 2)/4 for n odd.
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) for n>2. (End)
a(n) = (3-(-1)^n-(13+(-1)^n)*5^((1-(-1)^n+2*n)/4))/(2*(-1)^n-6). - Wesley Ivan Hurt, Oct 02 2021
MATHEMATICA
LinearRecurrence[{1, 5, -5}, {3, 7, 17}, 50] (* Paolo Xausa, Sep 16 2024 *)
PROG
(PARI) Vec((-5*x^2 + 4*x + 3)/(5*x^3 - 5*x^2 - x + 1) + O(x^40)) \\ Colin Barker, Nov 25 2016
CROSSREFS
Cf. A026386.
Sequence in context: A178941 A178155 A330457 * A176502 A319003 A141199
KEYWORD
nonn,easy
STATUS
approved