login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum_{T(i,j)}, 0<=j<=i, 0<=i<=n, where T is the array in A026386.
1

%I #21 Sep 16 2024 12:01:21

%S 3,7,17,37,87,187,437,937,2187,4687,10937,23437,54687,117187,273437,

%T 585937,1367187,2929687,6835937,14648437,34179687,73242187,170898437,

%U 366210937,854492187,1831054687,4272460937,9155273437,21362304687,45776367187,106811523437

%N Sum_{T(i,j)}, 0<=j<=i, 0<=i<=n, where T is the array in A026386.

%H Colin Barker, <a href="/A026396/b026396.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,-5).

%F G.f.: (3+4*x-5*x^2) / ((1-x)*(1-5*x^2)). - _Ralf Stephan_, Apr 30 2004

%F From _Colin Barker_, Nov 25 2016: (Start)

%F a(n) = (7*5^(n/2) - 1)/2 for n even.

%F a(n) = (6*5^((n+1)/2) - 2)/4 for n odd.

%F a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) for n>2. (End)

%F a(n) = (3-(-1)^n-(13+(-1)^n)*5^((1-(-1)^n+2*n)/4))/(2*(-1)^n-6). - _Wesley Ivan Hurt_, Oct 02 2021

%t LinearRecurrence[{1, 5, -5}, {3, 7, 17}, 50] (* _Paolo Xausa_, Sep 16 2024 *)

%o (PARI) Vec((-5*x^2 + 4*x + 3)/(5*x^3 - 5*x^2 - x + 1) + O(x^40)) \\ _Colin Barker_, Nov 25 2016

%Y Cf. A026386.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_