The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330457 Number of multisets of nonempty multisets of nonempty sets of positive integers with total sum n. 0
 1, 1, 3, 7, 17, 37, 87, 187, 414, 887, 1903, 4008, 8437, 17519, 36255, 74384, 151898, 308129, 622269, 1249768, 2499392, 4975421, 9865122, 19481300, 38331536, 75149380, 146840801, 285990797, 555297342, 1074996017, 2075201544, 3995079507, 7671034324, 14692086594 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA Euler transform of A089259. The Euler transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} 1/(1 - x^i)^s_i. EXAMPLE The a(4) = 17 partitions:   ((4))  ((13))      ((1)(12))        ((2)(2))    ((1)(1)(1)(1))          ((1)(3))    ((1)(1)(2))      ((2))((2))  ((1))((1)(1)(1))          ((1))((3))  ((1))((12))                  ((1)(1))((1)(1))                      ((1))((1)(2))                ((1))((1))((1)(1))                      ((2))((1)(1))                ((1))((1))((1))((1))                      ((1))((1))((2)) MATHEMATICA ppl[n_, k_]:=Switch[k, 0, {n}, 1, IntegerPartitions[n], _, Join@@Table[Union[Sort/@Tuples[ppl[#, k-1]&/@ptn]], {ptn, IntegerPartitions[n]}]]; Table[Length[Select[ppl[n, 3], And@@UnsameQ@@@Join@@#&]], {n, 0, 10}] CROSSREFS Cf. A001970, A007713, A049311, A050343, A063834, A089259, A270995, A318564, A323787-A323795, A330452-A330459. Sequence in context: A323583 A178941 A178155 * A026396 A176502 A319003 Adjacent sequences:  A330454 A330455 A330456 * A330458 A330459 A330460 KEYWORD nonn AUTHOR Gus Wiseman, Dec 17 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 05:19 EDT 2020. Contains 334815 sequences. (Running on oeis4.)