|
|
A025558
|
|
a(n) = (n/(n+1)) * lcm(1,2,...,n+1).
|
|
4
|
|
|
1, 4, 9, 48, 50, 360, 735, 2240, 2268, 25200, 25410, 332640, 334620, 336336, 675675, 11531520, 11571560, 220540320, 221152932, 221707200, 222211080, 5121436320, 5131136010, 25700298624, 25741485000, 77338861600, 77445096300, 2248776129600, 2251453244040
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) = (1/1 + 1/3 + 1/6 + ... + 1/C(n+1,2))*lcm(1,3,6,...,binomial(n+1,2)) = 2n/(n+1) * lcm(1,3,6,...,binomial(n+1,2)).
a(n+1) = a(n) * ((n+1)^2)/(n * ((n+2)/p) ), where p = n+2 if n+2 is prime, p = q if n+2 = q^k (q is prime, k>1), or p = 1 if n+2 is not a prime or a prime power. - Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Jan 08 2004
|
|
LINKS
|
Table of n, a(n) for n=1..29.
|
|
FORMULA
|
a(n) = n * A002944(n+1) = (n/(n+1)) * A003418(n+1).
|
|
MAPLE
|
a:= n-> (n/(n+1)) * ilcm($1..n+1):
seq(a(n), n=1..29); # Alois P. Heinz, Mar 07 2022
|
|
MATHEMATICA
|
Table[n/(n+1) LCM@@Range[n+1], {n, 30}] (* Harvey P. Dale, Apr 02 2011 *)
|
|
PROG
|
(PARI) a(n) = n*lcm([1..n+1])/(n+1); \\ Michel Marcus, Mar 07 2022
|
|
CROSSREFS
|
Cf. A002944, A003418.
Sequence in context: A197970 A048892 A108849 * A298986 A103933 A256880
Adjacent sequences: A025555 A025556 A025557 * A025559 A025560 A025561
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling
|
|
EXTENSIONS
|
Entry revised by N. J. A. Sloane, Nov 12 2004
|
|
STATUS
|
approved
|
|
|
|