Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Mar 07 2022 18:17:49
%S 1,4,9,48,50,360,735,2240,2268,25200,25410,332640,334620,336336,
%T 675675,11531520,11571560,220540320,221152932,221707200,222211080,
%U 5121436320,5131136010,25700298624,25741485000,77338861600,77445096300,2248776129600,2251453244040
%N a(n) = (n/(n+1)) * lcm(1,2,...,n+1).
%C a(n) = (1/1 + 1/3 + 1/6 + ... + 1/C(n+1,2))*lcm(1,3,6,...,binomial(n+1,2)) = 2n/(n+1) * lcm(1,3,6,...,binomial(n+1,2)).
%C a(n+1) = a(n) * ((n+1)^2)/(n * ((n+2)/p) ), where p = n+2 if n+2 is prime, p = q if n+2 = q^k (q is prime, k>1), or p = 1 if n+2 is not a prime or a prime power. - Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Jan 08 2004
%F a(n) = n * A002944(n+1) = (n/(n+1)) * A003418(n+1).
%p a:= n-> (n/(n+1)) * ilcm($1..n+1):
%p seq(a(n), n=1..29); # _Alois P. Heinz_, Mar 07 2022
%t Table[n/(n+1) LCM@@Range[n+1],{n,30}] (* _Harvey P. Dale_, Apr 02 2011 *)
%o (PARI) a(n) = n*lcm([1..n+1])/(n+1); \\ _Michel Marcus_, Mar 07 2022
%Y Cf. A002944, A003418.
%K nonn
%O 1,2
%A _Clark Kimberling_
%E Entry revised by _N. J. A. Sloane_, Nov 12 2004