login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024449 4th elementary symmetric function of the first n+3 primes. 7
210, 2927, 20581, 107315, 414849, 1376640, 4224150, 11063618, 27395788, 62364155, 129081579, 252768753, 480307611, 885449578, 1541654028, 2623783892, 4318819858, 6832984023, 10644660237, 16195499543, 24304992465, 36231495836, 52916319106, 75433702422 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

MAPLE

SymmPolyn := proc(L::list, n::integer)

    local c, a, sel;

    a :=0 ;

    sel := combinat[choose](nops(L), n) ;

    for c in sel do

        a := a+mul(L[e], e=c) ;

    end do:

    a;

end proc:

A024449 := proc(n)

    [seq(ithprime(k), k=1..n+3)] ;

    SymmPolyn(%, 4) ;

end proc: # R. J. Mathar, Sep 23 2016

# second Maple program:

b:= proc(n) option remember; convert(series(`if`(n=0, 1,

      b(n-1)*(ithprime(n)*x+1)), x, 5), polynom)

    end:

a:= n-> coeff(b(n+3), x, 4):

seq(a(n), n=1..30);  # Alois P. Heinz, Sep 06 2019

MATHEMATICA

b[n_] := b[n] = Series[If[n == 0, 1, b[n - 1] (Prime[n] x + 1)], {x, 0, 5}] // Normal;

a[n_] := Coefficient[b[n + 3], x, 4];

a /@ Range[24] (* Jean-Fran├žois Alcover, Mar 19 2020, after Alois P. Heinz *)

PROG

(PARI) e4(v)=sum(i=1, #v-3, v[i]*sum(j=i+1, #v-2, v[j]*sum(k=j+1, #v-1, v[k]*vecsum(v[k+1..#v]))))

a(n)=e4(primes(n)) \\ Charles R Greathouse IV, Jun 15 2015

CROSSREFS

Sequence in context: A027806 A024407 A027822 * A235240 A103604 A257711

Adjacent sequences:  A024446 A024447 A024448 * A024450 A024451 A024452

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 28 10:56 EDT 2021. Contains 348327 sequences. (Running on oeis4.)